
Paper ID #17044

Developing a Creative K-12 Manipulative: An ECECS Capstone

Dr. Mike Borowczak, Erebus Labs

Mike is the chief scientist and founder of Erebus Labs - a Hardware Security and Engineering Outreach
company located in Laramie, WY. He is also the Senior Data Scientist at a recently acquired startup. He
has worked with university faculty to promote and extend K20 STEM outreach in Ohio, Oregon, Texas
and Wyoming. He also has over a decade of industry and research experience - mostly revolving around
the semiconductor and bio-informatics industries - with specific experience at Texas Instruments, Intel
and Cincinnati Children’s Hospital Medical Center. In addition to his industry experience, he has spent
two years, while completing his PhD in Computer Science and Engineering, as a National Science Foun-
dation GK-12 fellow - teaching and bring real-word STEM applications in two urban high schools. He
has authored peer-reviewed articles, presented at national/international conferences, and taught under-
graduate/graduate courses in both Hardware Security (computer science & engineering) as well as STEM
Education and Outreach.

Dr. Andrea Carneal Burrows, University of Wyoming

Dr. Andrea C. Burrows received a Curriculum and Instruction: Science Specialization research Ed.D.
from the University of Cincinnati, M.S. in Science Education from Florida State University, and a B.S.
in Science Education/Biology from the University of Central Florida. She is an assistant professor in the
Department of Secondary Education at the University of Wyoming, where she teaches courses in science
methods, pedagogy, and research. Dr. Burrows also creates, implements, and evaluates grants at UW. Her
research interests include secondary STEM partnerships and the meanings, negotiations, and conceptual
changes associated with partnerships. She publishes and writes about STEM education extensively.

c©American Society for Engineering Education, 2016

Developing a K-12 Computer Science Manipulative: An ECECS Capstone

 Can you explain the basics of computing or computer science (CS)? Most
computing experts have no problem talking to their peers about CS, but can they teach
novices? Teaching and interacting with students without any prior scaffolding or
exposure to CS concepts is outside the expertise area of most CS content experts and
STEM faculty. This work highlights the need for, and current gap in K-12 computer
science manipulatives. It focuses on the development and implementation of a solution
that mitigates the traditional ‘experts teaching novices’ problem. The result, ‘A Block of
Code’ allows students to visualize, manipulate and experiment with computer science
concepts using a physical medium. This work looks at the impact of authentic value-
added capstone projects on student’s soft skills by comparing results of a multi-year
collaboration survey given to multiple senior capstone teams. The observed trends
suggest that projects with community impact (irrespective of size or geographic
constraint) foster increased communication, participation, and ultimately collaboration.

Introduction

	 There	 is	 a	 worldwide	 push	 to	 engage	 and	 develop	 K-12	 student	 interest	 in	 Science,	

Technology,	 Engineering	 and	Mathematics	 (STEM)	 disciplines1.	 Some	 STEM	 collegiate	 programs,	
such	 as	 civil	 and	 mechanical	 engineering,	 seem	 to	 have	 a	 plethora	 of	 incoming	 and	 returning	
students.	Why?	Building	blocks!	One	of	the	biggest	recruitment	disadvantages	to	the	electrical	and	
computing	 disciplines	 is	 the	mystery	 behind	 their	 deliverables.	What	 does	 an	 electrical	 engineer	
do?	A	computer	engineer?	A	computer	scientist?	Few	students	ever	have	the	opportunity	to	engage	
in	 authentic,	 age	 and	 cost	 appropriate	 activities	 related	 to	 the	 computing	 spectrum.	 In	 order	 to	
engage	 and	develop	 student	 interest	 in	 computing	professions	we	propose	 the	need	 for	 low-cost	
physical	manipulatives	focused	on	computing	rather	than	the	construction,	physics	and	mechanics	
in	 STEM2.	 Finally,	 to	 reach	 wider	 student	 audiences,	 exposure	 to	 computing	must	 to	 go	 beyond	
traditional	robotic	applications3.		

	
	 While	developing	 interest	 in	engineering	and	other	STEM	fields	 in	paramount,	developing	

well-rounded	 engineers	 is	 equally	 important.	 STEM	 professions	 have	 an	 image	 problem.	 The	
general	public	generally	describes	engineers	as	introverted	and	anti-social	–	“nerdy.”	Among	many	
K-16	 STEM	 students,	 communication	 and	 other	 soft	 skills	 are	 perceived	 as	 secondary	 to	 content	
knowledge	skills.		Clearly	educators,	industry	and	ABET	disagree	–	STEM	professionals,	even	those	
in	computing,	need	a	balance	of	content	and	soft	skills.	Developing	soft	skills	can	occur	in	different	
forms,	 but	 assessment	 of	 these	 skills	 in	 non-intrusive	 yet	 authentic	 scenarios	 is	 only	 starting	 to	
occur.	 Studying	 the	 communication	 patterns	 of	multiple	 capstone	 teams,	 given	 different	 types	 of	
problems	to	solve,	allows	us	to	develop	insight	into	how	real	world	problems	can	motivate	a	team	
while	increasing	collaboration	and	communication	effectiveness.	

	
Finally,	while	STEM	and	education	faculty	teach	collegiate	 level	content	courses	both	faculties	

could	benefit	from	richer	collaboration	and	coordination.	How	can	future	K16+	educators	develop	a	
pipeline	of	STEM	majors	and	graduates	without	partnerships	between	the	faculties?	We	propose	a	
capstone	model	 in	which	 teams	report	 to	a	multi-disciplinary	advisory	panel	 rather	 than	a	 single	
STEM	 advisor.	 This paper highlights how a single Electrical and Computer Engineering and Computer

Science (ECECS) capstone project can 1) be influenced by a societal need, 2) develop soft skills of a
capstone team, and 3) create lasting mutually beneficial partnerships between academic faculties and
external partners.	

Purpose/Problem/Gap

 Learning, development and concept synthesis can take many paths – natural learning progressions
often being though the manipulation and unguided interactions with our environment. Consider a child
approaching building blocks for the first time. There are no instructions – there are blocks and the laws of
physics. Structures are built through trial and error. Manipulatives allow young children to learn, develop
and then build simple structures without needing a civil engineer to scaffold their knowledge. Why should
computing be any different?

The use of manipulatives in K-16 classrooms has already been well established. Research of
manipulatives in fields that are more theoretical and abstract in nature, such as mathematics, are also
being to emmege4-7. While specific areas of brain activity and development only occur during
manipulative activities8-10, little academic instruction ever focuses on active manipulation11. The problem
in certain fields, in particular computing, is the lack of concrete, tangible and intuitive manipulatives.
Pure computer science focuses on the theory of computing, algorithms, graph theory and so forth -
translating foundational ideas from these realms into student manipulatives takes creativity, time, and
effort to implement.

Some recent work has focused on the need to bridge the manipulation gap in STEM education12,

but to authors’ knowledge there has not been any work in developing physical manipulatives specifically
for Computer Science. Computer science is being pushed as a fundamental concept that should be taught
to all children, along with the three R’s of reading, writing and arithmetic. Even the President of United
States is trying to allocate $4 billion for the effort13. While many physical constructs have been promoted
to aid in teaching CS to students, including robotics (e.g. Lego Mindstorms), and hardware/software
systems (e.g. Arduinos and Raspberry PIs) these systems focus more on physical construction than
computing, or are inherently abstract such that the amount of scaffolding needed to use the systems does
not allow for an intuitive, inquiry learning experience. This work detailed in this paper focuses on the
development of an ECECS project to create an intuitive, self-contained computer science manipulative for
K-12 students. The end-product is a set of fifty 2x2x2 inch blocks that can be physically connected to
produce and executable program.

Creating “A Block of Code”

The authors formulated the idea for “A Block of Code” after developing and implementing

several dozen K-12 professional development (PD) workshop sessions focusing on STEM integration –
especially in computing. Observations during each PD, in conjunction with teacher feedback led to a stark
reality – teaching computer science through use of robotics diluted the message but teaching computer
science using micro-controllers required a steep learning curve. In each instance, while teachers enjoyed
the activities and had measurable content learning gains, the ability to quickly develop their baseline
knowledge of computing was overshadowed by complexities of the implementation details.

Over time the authors began using the teacher participants themselves as algorithmic components

to illustrate fundamentals of computing. Each teacher, with a specific programmatic task, would act out
that task, then the groups combined behavior, when organized correctly could solve problems given
specific constraints. Limitations of this approach include both scale and re-use, and thus the need for a
low-cost physical manipulative. The physical manipulative would need to perform some programmatic
actions, be restructured, modified, removed, and finally intuitive enough to be used by all ages.

Thus an idea was born – what if you had a set of physical building blocks that could perform a
predetermined yet modifiable action. When connected to other blocks, the actions of the set of blocks is
determined by the structural topology (connections between the blocks). This mimics the structure and
syntax of languages – including those we use to program hardware devices.

This basic idea was presented to a five-member capstone team as the two-page proposal seen in

Appendix A. While assigned an engineering faculty advisor, the team also had the benefit of two
additional advisors in the form an education faculty member as well as and industry sponsor. The three
advisors worked collaboratively to guide the capstone team towards a viable solution while not interfering
with their day-to-day interactions. While not involved in the daily challenges and roadblocks faced by the
team, the advisory panel monitored the team’s progress using Github’s collaboration features
(www.github.com/features), as well as through regular team meetings. During these meetings, the
engineering advisor and project sponsor advisor would consult with the team on challenges providing
guiding suggestions; the education expert would aid in providing additional context in order to ground the
project requirements and objectives based on prior educational research results. After several meetings
between the capstone team and advisory panel, the team put forward an official design proposal to design,
implement and build the blocks of code system in a 3-month timeframe. That proposal formed the basis of
their ultimate end product, a functional set of physical programming blocks. Ultimately, their solution
won “Most Creative Senior Capstone Project” during an end of the year capstone presentation.

Technical Details of “A Block of Code”

The overall system design of “A Block of Code” consists of two primary components – blocks of

user-selectable functions and a controller cape, which provided power and a global reset signal. This
distinct separation of the two subsystems, shown in Figure 1, is what ultimately allowed the team to
success at delivering a functional “A Block of Code” product. This separation also lowers the barrier of
entry to use the blocks of code – the pre-programmed controller cape handles all of the extraneous setup
and complexity of the system, allowing the end user to simply focus on manipulation of the physical
blocks of codes.

Figure	1:	Level	0	 -	 System	Diagram	 for	A	Block	of	Code.	The	 two	primary	 subsystems	allowed	 the	 team	 to	

work	concurrently	on	three	separate	challenges.

As with most large run projects, a set of proof a concept “blocks of code” were designed and built
prior to PCB fabrication. In order to exist the proof of concept stage, the team targeted three critical
components of the system: a) intra-block communication, b) topology detection, and c) main processor
token recognition. Because the team decided to abstract away control of the blocks to an external
arbitrator, the team was able to work concurrently on the three major functions of the system, distributed
across the two subsystems. The primary function of the block is to report its selected function in
conjunction with the identity of its neighboring blocks back to the external arbitrator (or control cape).
The control cape’s main functions are: network topology detection, block tokens parsing, program
execution, and supplemental I/O and control of the blocks.

In order to create blocks of code that could communicate with each other in a reliable and

intuitive way, the capstone team needed to devise a mechanism that would allow adjacent blocks to
communicate. Given that a 3-dimensional space could allow for communication along six faces of a
block, the design team and advisory panel decided that in order to maintain semblance of traditional
programming constructs blocks would only communicate along four faces, retaining one of the remaining
faces for user-based control and the final face as a base to rest on a solid surface (See Figure 2).

Figure	2:	A	Block	of	Code	consists	of	five	useable	faces:	four	for	communication	and	one	for	control.

To provide an infrastructure for intra-block identification and communication, each block

contains a low cost AVR microcontroller, as well as four DB-9 connectors (two male and two female)
positioned in such a way that the directionality of the collection of blocks is physically enforced. Each
block is controlled by an ATtiny461 microcontroller, which is connected to power, ground, a 1MΩ
potentiometer, a 2-neighbor local SPI-bus as well as a TWI-global bus. Figure 3 details the connections
for power, clock and the 2-neighbor network.

In order to discover the network topology of a set of blocks the control cape, in this case a

BeagleBone, communicates along the local bus to a single block directly below it. A handshake protocol,
which will be repeated for every pair of blocks, passes its own X and Y coordinates to the next block.
Depending on where the handshake signal originates the receiving block will increment its own X or Y
coordinate. The XY coordinate pair is then translated to a TWI address on the global bus. Topology
discovery concludes when the handshake protocol yields no response – indicating there are no further
blocks below or to the right of the ‘last block.’ The BeagleBone then queries each block using the TWI
global bus and the XY coordinate derived addresses. The query returns a single byte payload seen in
Figure 4. The information stored and transmitted by each individual block includes its neighbors, category
type and current ADC value.

	
	

Figure	 4:	 Single	 byte	 response	 from	 a	 block	 when	 queried.	 The	 2	 MSBs	 indicate	 presence	 of	 adjacent	 blocks	
vertically	and	horizontally.	The	next	two	MSBs	contain	the	category	of	the	block,	while	the	4	LSBs	represent	the	
value	of	the	ADC.

The payload received from an individual block determines the functionality of a given block,

ultimately used by the BeagleBone to construct a lexical mapping of the physical blocks. Using Table 1,
the category and token (ADC) information is used to determine the exact functionality (lexical token) of

Figure	3:	Power	and	distribution	as	well	as	2-neighbor	network	(X	&	Y	axis).

the user-tuned block. Users are able to tune the four types of blocks through use of a wheel attached to the
potentiometer as seen in Figure 5. The four types of blocks include a value block, operator block, control
block, and output block.

Table	1:	Translation	between	ADC	Token	value	and	lexical	token	based	on	block	category	type.	

Lexical analysis of the physical blocks occurs left to right from top to bottom. Figure 6 details the

flow of the lexical analysis process. After lexical analysis, a parser and interpreter provide feedback to the
blocks of code enabling a variety of Error and Status LEDs. In this implementation of ‘A Block of Code,’
the Error LEDs only provides an indicator that an issue exists, no other error message is provided to the
end user. A syntactically correct program is executed, and outputs are logged both to the BeagleBone

Figure	5:	The	four	types	of	blocks	with	selections:	Value	(2),	Operator	(^),	Control	(while),	Output	(Out1).	

standard output and passed through an output pipeline that drives the five customizable outputs listed in
the Statement block column of Table 1. Figure 7 shows a sample program, and the flow through the
orchestration script that runs on the controller cape with a buzzer attached to output 2 and a motor
attached to output 4.

	

Figure	7:	Interaction	of	the	physical	blocks	and	orchestration	code	running	on	the	controller	cape.

Figure	6:	Lexer	Flow	Diagram	highlighting	the	interaction	between	the	lexing	process	and	the	block	payload.

Results of Physical Implementation and Future Direction

The final physical product, a set of 50 “Blocks of Code,” were assembled, tested and then used in a
hands-on activity. For the hands-on activity several K-5 students were randomly selected to interact with
the blocks with minimal instruction. Of this small sample of students (n<10), none were known to the
researchers and none had programmed before. These students quickly engaged with the blocks asking
questions and experimenting with the available structures and features. Since the event was co-located
with an annual CS and ECE senior capstone presentation, many other capstone teams ventured to the
activity and spent as much time as the K-5 students actively engaged in trying to solving a set of
advanced algorithm – most competing to achieve solutions in the fewest number of blocks. A subset of
pictures from the event is found in Figure 8.

Through	observation	and	informal	interviews,	the	authors	were	able	to	determine	that	the	K-5	

students,	with	 no	 prior	 CS	 experiences,	were	 able	 to	 construct	 simple	 programs	 to	 solve	 several	
algorithmic	challenges	through	use	of	the	“Blocks	of	Code.”	While	admittedly	a	small	sample	of	K-5	
students	(n<10)	participated	in	the	initial	trial,	the	feedback	from	those	students,	faculty	observers,	
and	 senior	 capstone	 peers	 on	 the	 concept	 of	 “Blocks	 of	 Code”	 was	 extremely	 positive.	 Use	 of	
manipulatives	engaged	novice	and	experts	alike	–	with	novices	interested	in	just	getting	a	working	
solution	and	experts	trying	to	show	off	the	most	complex	program	in	the	fewest	number	of	blocks.	
A	sample	guiding	worksheet	that	was	provided	for	older	students	during	the	activity	 is	 located	in	
Appendix	B.			

The development of a set of physical set of “blocks of code” yielded a plethora of ideas and
enhancements for future CS and ECE manipulatives. With respect to the existing concept, ideas for future

Figure	8:	K-16	students	with	"A	Block	of	Code."	K-5	far	left	/	top	center	and	older	students	right	/	bottom	center.	

development include magnetic coupling for physical and communication coupling, user definable blocks,
additional input sensor blocks, smaller form factor “puck-like” blocks, and dispersed mesh processing
rather than centralized external processing. The idea of using foundational block structures to implement
a complex system goes well beyond CS, and even electrical engineering, the block concept could easily
be translated to biology, chemistry, and even traditional language studies. Finally, while the objective of
“A Block of Code” was to create a physical manipulative, the authors also realize that this not always the
most optimal delivery mechanism – virtual manipulation of 3D block forms may yield a reasonable
compromise for spatial stimulation in working with abstract concepts such as those found in computer
science.

The Study and Methods

This work looks at the impact of authentic value-added capstone projects on student’s soft skills by
comparing results of a multi-year collaboration survey given to multiple senior capstone teams with data
collected during use of an online code collaboration tool. The Senior Design Capstone team implementing
“A Block of Code” was one of three separate capstone teams that were paired with an advisory panel that
contained both authors as well as an additional engineering faculty member. For the purposes of this
mixed-method study, the participants consist only of the student members of the capstone teams.
Additionally, due to the uniformity of the group participants the only factor that will used to differentiate
the participants are whether they were “A Block of Code” members (ABC) or not (BASELINE). For each
participant, their communication and collaboration soft skill aptitudes as well as perceptions of their
selected project were self-assessed immediately prior to and immediately following the six-month senior
capstone project. This self-assessment consisted of both quantitative Likert-scale questions as well as
qualitative open response questions. In addition, the advisory panel tracked several key statistics about
any group communication or conflict – either within the entire group or between selected participants.
Finally, the participants were all required to use GitHub (www.github.com) as their primary means of
collaboration, communication initiation as well as record keeping. The aggregate data collected by
GitHub of the students’ usage patterns, communication frequency as well as several other built-in metrics
were used to determine relationships and communication efficiency and development during the course of
the project. Ultimately, notes from end of project interviews were used to validate observed patterns
between participant project perceptions, communication and soft skill growth and outward
communication.

Study Results

 When asked before and after the capstone project to gauge their interest in the project itself, the
ABC team as a whole had a much more positive outlook than the baseline participants. Before and after,
the ABC team scored their interest, on average, in the project at “Significant” (4.7 and 4.8 respectively on
a 5.0 Likert-scale), while the other baseline participants showed decreases from between pre and post
interest from “Moderately Significant” to “Moderately” (3.9 down to 3.2). Additionally, of all
participants in the baseline capstone projects which were not specially targeted to students, only 10%
showed an interest in continuing to work on their capstone project after graduation, this was in stark
comparison to the ABC participants of which 80% showed an interest in continuing development post-
graduation. The two groups, ABC and baseline, responses to “how and why did you deal with conflict?”
were also quite telling both in their responses as well as the supporting evidence. The baseline
participant’s responses focused around resolving conflicts “for the grade” and doing so through
“establishing hierarchies and domain boundaries and contracts.” While this may model typical
professional and industrial models, it does not promote the soft skills expected through ABET. The ABC
team references solving problems through collaborative efforts, focusing on having subsystem champions
that enabled discussions, brainstorming, moderation and support throughout their project, not for “the
grade,” but rather to achieve a “self-imposed goal of a successful project.”

 Figures 9 and 10 highlight the stark difference between the ABC and Baseline teams. Note that
all of the teams were given projects designed by the same project sponsor, all teams went through the
same selection process, and the same senior capstone experience, and the majority of each advisory
panels consisted of the same members. The number of team and sponsor meeting was nearly identical.
The only difference found between the ABC team and the Baseline was the participant interest in solving
the problem for a purpose beyond that of the grade of the capstone project.

	
Figure	9:	The	Average	Discussions	and	Discussion	Lengths	Per	Week	for	the	ABC	team	versus	the	Baseline	teams.

	

Figure	10:	The	Average	Number	of	Meetings	Per	Week	for	the	ABC	team	versus	the	Baseline	teams.

Conclusion

The observed trends suggest that projects with community impact (irrespective of size or

geographic constraint) foster increased communication, participation, and ultimately
collaboration. The ABC participants self-identified as “caring about computing within an
educational context.” While community impact is generally thought of a localized, geographically
based concept, looking at professional, academic, and perhaps non-traditional communities can
aid in the development of projects ideas for K-16 students. In the context of capstone projects,
appealing to open needs of a community that the students recognize and are a part of can greatly
influence their motivation and desire to succeed. In order to build a successful and diverse field of
future ECE and CS students and professionals, we as a community need to develop pathways that
go beyond traditional robotics and gaming-centric. We need to continue to develop interest in the
field by exposing students of all ages to the real world applications and societal impacts of
computing, and we need to build their confidence and foundational skills without requiring
foundations in high-level abstract thinking skills to get started. We need to engage our students in
the possibilities of computing not just in K-12, but into college as well.

Acknowledgements

The authors acknowledge the members of the “A Block of Code” capstone team: Nathan Bryant,
Daniel Frister, Tyler Hart, Jacob Mickiewicz, and Greg Stromire; their ECE faculty advisor: Roy Kravitz;
and, the Portland State University administration and faculty, for their continued partnership and
development of high quality and innovative capstone products and experiences. Additionally, “Blocks of
Code” and the other capstone projects referenced in this paper were funded by Erebus Labs, with funds
used entirely for the physical components and fabrication of the end products.

References

[1] Blackley, S., & Howell, J. (2015). A STEM Narrative: 15 Years in the Making. Australian Journal of Teacher

Education, 40(7). http://doi.org/10.14221/ajte.2015v40n7.8
[2] Nadelson, L., Callahan, J., Pyke, P., Hay, A., & Schrader, C. (2010). Teaching Inquiry Based Stem In The

Elementary Grades Using Manipulatives: A Systemic Solution Report (pp. 15.1176.1–15.1176.18).
Presented at the 2010 ASEE Annual Conference & Exposition.

[3] Margolis, J., Fisher, A., & Miller, F. (2000). The Anatomy of Interest: Women in Undergraduate Computer
Science. Women’s Studies Quarterly, 28(1/2), 104–127.

[4] Burns, B. A. and Hamm, E. M. (2011), A Comparison of Concrete and Virtual Manipulative Use in Third- and
Fourth-Grade Mathematics. School Science and Mathematics, 111: 256–261. doi: 10.1111/j.1949-
8594.2011.00086.x

[5] Clements, D. H. (1999). “Concrete” manipulatives, concrete ideas. Contemporary Issues in Early
Childhood, 1(1), 45–60.

[6] Suydam, M. N. (1985). Research on instructional materials for mathematics. Columbus, OH: ERIC
Clearinghouse for Science, Mathematics and Environmental Education.

[7] Suydam, M. N., & Higgins, J. L. (1977). Activity-based learning in elementary school. Mathematics:
recommendations from research. Columbus, OH: ERIC Center for Science, Mathematics and
Environmental Education, College of Education, Ohio State University.

[8] Gogtay, N., Giedd, J. N., Lusk, L., Hayashi, K. M., Greenstein, D., Vaituzis, A. C., … Thompson, P. M. (2004).
Dynamic mapping of human cortical development during childhood through early adulthood. Proceedings
of the National Academy of Sciences of the United States of America, 101(21), 8174–8179.
http://doi.org/10.1073/pnas.0402680101

[9] Jensen, E. (2005). Teaching with the Brain in Mind, 2nd Edition. Association for Supervision and Curriculum
Development.

[10] Ottenbacher, K. J., Muller, L., Brandt, D., Heintzelman, A., Hojem, P., & Sharpe, P. (1987). The effectiveness
of tactile stimulation as a form of early intervention. Journal of Developmental and Behavioral Pediatrics,
8(2).

[11] Trowbridge, L. W., Bybee, R.W & Powell, J. C. (2000). Teaching secondary school science. Englewood Cliffs,
NJ: Prentice Hall.

[12] Ejiwale, James A. (2012). "Facilitating teaching and learning across STEM fields." Journal of STEM
Education: Innovations and Research 13(3) 87.

[13] Obama, B. (2016). “The President’s Radio Address: Giving Every Student an Opportunity to Learn Through
Computer Science For All.” Office of the Press Secretary, The White House. Available
https://www.whitehouse.gov/the-press-office/2016/01/30/weekly-address-giving-every-student-
opportunity-learn-through-computer

Appendix A: ECE Capstone Proposal

A Block of Code:
Title: Physical manipulators for developing and implementing short programing routines
Project Short Name: A Block of Code (ABC)
Sponsors: BLINDED
Targeted Users: Infants to High School aged children, parents and their educators

Problem/Task:
Your task is to design the basic hardware / software structure for ultra-low cost, connectable “blocks”
that mimic a simple-grammar programming language. The fundamental grammar should contain 7
types of blocks:
• numbers (ints/doubles) – stringing these blocks together forms longer numbers [0,1,2,3,4,5];

[6,7,8,9,.]
• variables
• assignment operators
• simple binary operators (*,/,-,+,%?):
• equivalence operators (<,>,==, !=,<=,>=)
• control block start/end
• program start/end

While a majority of the logic for the entire operation could be housed in the program start/end or

control block start/end – there are communication and connectivity challenges; especially without
exposing connectors.

Background:

Algorithms, logical constructs and the foundations of programming are generally limited to
computer-based instances. No physical manipulators exist that expose children to programming as
they do for number and alphabet systems, mechanics, art, etc. Build a prototype for building blocks
that can be attached through internal magnets, these magnets perform two actions 1) physical connect
and 2) logical circuit connections.

Skill Requirements (Order of importance):
• System Design
• Ultra-small form factor design
• Ultra-low power/heat design
• Power and signal transmission through traditional wire & inductance

Other Details:

• IP Ownership: Joint/None: The goal is to release an open hardware device and software;

joint ownership of the original design, publicly available for reuse under similar
attribution

• Suggested Team Size: 4-6: EE, CE, CS tasks abound;
• Extension after End of Project: 50-100 parts run to distribute to high-needs schools as a

mechanism to enhance/drive STEM as a college degree option.
• Publication Opportunities: Conference and Journal Publication both in K20 Education, IEEE

Spectrum, and/or others (joint ownership: ECE team and Sponsors) [resume/CV builder!]
• No NDA required.

Requirements:

Must Have
• Hardware cost <$3 per unit (average cost for a set 20 = $60)
• Open Source Hardware Design & Board (can use “closed source” components: ASICs, uC, etc.)

o Must Have a Multi-Chip solution – e.g. no single SoC;
o Magnetic + Inductive coupling between blocks
o Fundamental grammar functioning; assignment; binary operators;

• Open Software Repository (github)
• Power:

o Ultra Low power operation
o Built in power source / power pack
o Separate “power” blocks?

• Set of blocks for each team member and two sponsors
Like to Have
• Hardware cost <$2 per unit (average cost for a set 20 = $40)
• Hardware:

o Multi-function blocks – e.g. 6 (or 4) binary operators on a single block; depending on
connections/which side “faces up” operation changes

o Control Structure Blocks
• Set of blocks for each team member and two sponsors + 5 extra sets
Nice to Have
• Hardware cost <$1 per unit (average cost for a set 20 = $20)
• Power

o Built in power source w/inductance recharge
• Computer GUI/Phone App: simulate a set of blocks (pre build) or take a picture of a set of blocks

and execute code
• Set of blocks for each team member and two sponsors + 10 extra
Milestones:
• Hardware Evaluation to satisfy given constraints
• Main System: Modification of existing Open Hardware Design to create part or creation of

custom PCB?
• Power System: Battery capacity + recharge?
• Communication mechanisms: Effective low cost communication and sync
• Implementation
• Development of full hardware solution
• Development of power system
• Development of communication system

Appendix B: Advanced Problem Section for Middle School to Collegiate Level Students

You have the following blocks available:

15 Value Blocks 15 Operator Blocks 15 Control Blocks 7 Output Blocks

• a variable {x, y, z,

Sum, Count}, or
• a value from 1-9

• = is equality
checking NOT
assignment

• if, else & endif
• while & endwhile
• (&)

• Sends output to
specific channel

Sky Blue Peach Dandelion Sea Green

Exercise #1: Convert & Print a temperature given in Fahrenheit into Celsius.

How many blocks does it take you?

Exercise #2: Write a program that computes Fibonacci numbers less than 25.
How many blocks does it take you? <50? <25?

[block area omitted for length]

Exercise #3: Create a program from scratch using as many blocks as you can.

[block area omitted for length]
	

